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Explicit a priori error bounds for the approximation by the H 1
0-projection into

piecewise polynomial spaces are given. In particular, for the quadratic approximation,
the optimal constant is derived, and a nearly optimal value for the cubic is obtained.
These constants play an important role in the numerical verification method of finite
element solutions for nonlinear elliptic equations. � 1998 Academic Press

1. INTRODUCTION

The purpose of this article is to bound the L2-norm of the error in the
least-squares approximation by piecewise polynomials in terms of the L2-norm
of the first derivative of the function being approximated. However, we
prefer to describe this problem in the terms of the following application.

Let u # H 1
0(I ) & H 2(I ) be a function defined on the interval I :=[0, 1].

We set a partition of I,

2: 0=x0<x1< } } } <xm=1,

and the mesh size of this partition,

h := max
1�i�m

(xi&xi&1).

For any nonnegative integer N, we define the piecewise polynomial space
of degree N+1,

S2, N(I ) :=[ p # C(I) | p is a polynomial of degree�N+1

on each subinterval [xi&1 , xi], 1�i�m, with p(0)= p(1)=0].

(1)
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We define the H 1
0-projection of u onto S2, N(I ) by

P2, Nu # S2, N(I ), such that ((P2, Nu)$, v$)=(u$, v$), \v # S2, N(I ),

where (u, v) :=[�1
0 u(x) v(x) dx]1�2 means the inner product in L2(I ).

We consider error bounds for the H 1
0-projection of the form

&u$&(P2, Nu)$&�Ch &u"&,

where &u& :=(u, u)1�2, and seek the smallest possible C, i.e., the number

CN :=sup
2

sup
u # H 1

0 (I ) & H 2(I ), u{0

&u$&(P2, Nu)$&
h &u"&

. (2)

In particular, CN depends only on N. When we are not able to determine
CN exactly, we look for good lower and upper bounds, i.e., for C

�
N and C� N

with

C
�

N�CN�C� N .

The explicit value of C0 (i.e., for N=0, the piecewise linear case) equals
1�?. Indeed, by the facts that the piecewise linear interpolation coincides
with the H 1

0-projection and the error estimates in [8, Theorem 2.5], we
have

&u$&(P2, 0 u)$&�
h
?

&u"&.

Equality holds iff u(x)=sin(?x�h) and 2 is a uniform partition. Therefore,
C0=1�?.

In this paper, we present the following results:

v We show that C1=1�(2?).

v We obtain the nearly optimal bounds 1�8.98954�C2�1�8.92338
for the cubic case, N=2.

2. EXPLICIT ESTIMATES FOR CN

2.1. Reduction of the Problem

As is well known, u&P2, Nu vanishes at xi for all 0�i�m (e.g., [8])
and, on each interval [xi , xi+1], depends only on u on that interval. So we
can reduce the problem of calculating CN to each subinterval. Moreover,
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by a simple scaling, it is sufficient to consider only the case m=1. Therefore,

CN= sup
u # H 1

0(I ) & H 2(I ), u{0

&u$&(PNu)$&
&u"&

, (3)

with

PN :=PI, N .

We also define another projection u� # Qn(I ) :=SI, N(I ) as

u� =PN _ :
N

k=1

(u, sk)
&sk &2 sk& , (4)

with sk(x) :=sin(k?x), all k, and use it to determine a suitable constant C� N

which satisfies

&u$&(PNu)$&�&u$&u� "&�C� N &u"&, \u # H 1
0(I ) & H2(I ), (5)

as an upper bound for CN .

2.2. The Case of Polynomials of Degree 2

We obtained the following theorem for N=1.

Theorem 1. In the quadratic case, the exact constant is C1=1�(2?).

Proof. For any function u # H 1
0(I ) & H2(I ), using the Fourier expansion

of u,

u(x)t :
�

k=1

uk sin(k?x),

the first derivative, u� $, of the function u� defined in (4) can be written as

u� $=u1(?c1 , L1) L1 ,

where, here and below, ck(x) :=cos(k?x), and Li is the i th normalized
Legendre polynomial defined by

Li (x) :=
- 2i+1

i !
d i

dxi (xi (1&x) i).
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Considering the orthogonality of the trigonometric functions, we have

&u$&u� $&2=&u1?c1 &2&&u1(?c1 , L1) L1 &2+" :
�

k=2

ukk?ck"
2

&2u1(?c1 , L1) \L1 , :
�

k=2

uk k?ck+ . (6)

From this, by Parseval's equality and the property of the H 1
0-projection,

&u$&u� $&2=\?2

2
&

48
?2+ u1

2+ :
�

k=2

(k?)2

2
uk

2&
96
?2 u1 :

�

l=2

u2l&1

2l&1
. (7)

For arbitrary #1>0, this can be bounded as

&u$&u� $&2�\?2

2
&

48
?2+ u1

2+ :
�

k=2

(k?)2

2
uk

2+
48
?2 \#1u1

2+
1
#1

:
�

l=2
\u2l&1

2l&1+
2

+ ,

(8)where we have used the inequality

2 |ab|�#1a2+
1
#1

b2 (\#1>0).

Moreover, by the Cauchy�Schwarz inequality, we obtain

\ :
�

l=2

u2l&1

2l&1+
2

=\ :
�

l=2

1
(2l&1)3 } (2l&1)2 u2l&1+

2

�\ :
�

l=2

1
(2l&1)6+\ :

�

l=2

(2l&1)4 u2l&1
2+

=\(26&1) ?6

2 } 6!
B6&1+\ :

�

l=2

(2l&1)4 u2l&1
2+

=\ ?6

960
&1+\ :

�

l=2

(2l&1)4 u2l&1
2+ , (9)

where Bn is the Bernoulli number.
Thus, from (6)�(9), we obtain

&u$&u� $&2�\?2

2
&

48
?2+

48
?2 #1+ u1

2

+ :
�

l=2
_((2l&1) ?)2

2
+

48
?2 \ ?6

960
&1+ (2l&1)4 1

#1& u2l&1
2

+ :
�

l=1

(2l?)2

2
u2l

2. (10)
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Now observe that

&u"&2= :
�

k=1

(k?)4

2
uk

2, (11)

from the Fourier expansion of u" and Parseval's equality. By comparing
the corresponding coefficients of each u2

k in (10) and (11), we get the
following sufficient conditions for C� 1 in (5):

(i)
?2

2
&

48
?2+

48
?2 #1�

?4

2
C� 2

1 ,

(ii)
((2l&1)?)2

2
+

48
?2 \ ?6

960
&1+ (2l&1)4 1

#1

�
((2l&1) ?)4

2
C� 2

1 (\l�2),

(iii)
1

(2l?)2�C� 2
1 (\l�1).

Condition (i) is equivalent to

(i)$ #1�
?4

96
(C� 2

1?2&1)+1.

Condition (ii) is equivalent to

48
?2#1 \

?6

960
&1+�

?2

2 \C� 2
1?2&

1
(2l&1)2+ (\l�2),

and this can be reduced to the inequality for the smallest l, i.e., l=2,

48
?2#1 \

?6

960
&1+�

?2

2 \C� 2
1?

2&
1
9+ .

So we have the following condition equivalent to (ii):

(ii)$
96
?4 \ ?6

960
&1+\C� 2

1?2&
1
9+

&1

�#1 .

By (i)$ and (ii)$, the existence of #1>0 is equivalent to

?6

10
&96�?4 \?4

96
(?2C� 2

1&1)+1+\?2C� 2
1&

1
9+ . (12)

495BEST CONSTANT IN THE ERROR BOUND



File: DISTL2 317206 . By:CV . Date:28:04:98 . Time:13:21 LOP8M. V8.B. Page 01:01
Codes: 2282 Signs: 1044 . Length: 45 pic 0 pts, 190 mm

It is easily seen that the smallest C� 1 satisfying this inequality is smaller than
1�(2?) which is the minimal solution of (iii). Thus, we obtain (5) with
C� 1=1�(2?) for this case. On the other hand, for u=s2 , we have u$=2?c2 ,
while (P1u)$=0 and u"=&4?2s2 , hence &u$&(P1 u)$&�&u"&=1�(2?). Thus,
C1=C� 1=1�(2?). K

2.3. The Case of Polynomials of Degree 3

It is tempting to deduce from the cases N=0 and N=1 that, for any N,

CN=
1

(N+1) ?
.

But, already for N=2, we found the counterexample

u
�
(x) :=sin \?x

h +
3

,
1

3?
<

&u
�
$&(P2 u

�
)$&

h &u
�
"&

r
1

8.98954
. (13)

Then, we adopt the right-hand side as C
�

2 .
As to an upper bound, C� 2 , we have the following theorem.

Theorem 2. For any u # H 1
0(I ) & H2(I ) and its H 1

0-projection P2u
into Q2(I ),

&u$&(P2u)$&�C� 2 &u"&, (14)

with

C� 2 :=
1

3 - 5 ?3

_(&2160+25?4+4 - 5 - &174960&1080?4+243?6+5?8)1�2

r
1

8.92337
.

Proof. First note that, for u� given in (4), u� $ can be written as

u� $=u1(?c1 , L1) L1+u2(2?c2 , L2) L2 .

Considering the orthogonality of the trigonometric functions, Parseval's
equality, and the property of H 1

0-projection, we have
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&u$&u� $&2=&u1 ?c1&2&&u1(?c1 , L1) L1&2

+&u22?c2 &2&&u2(2?c2 , L2) L2 &2+" :
�

k=3

ukk?ck"
2

&2u1(?c1 , L1) \L1 , :
�

k=3

uk k?ck+
&2u2(2?c2 , L2) \L2 , :

�

k=3

ukk?ck+
=\?2

2
&

48
?2+ u2

1+\2?2&
180
?2 + u2

2

+ :
�

k=3

(k?)2

2
u2

k&2 }
48
?2 u1 :

�

l=2

u2l&1

2l&1

&2 }
180
?2 u2 :

�

l=2

u2l

2l
, (15)

Arguing as in the proof for Theorem 1 and with the equality

:
�

l=2

1
l 6=

(2?)6

2 } 6!
B6&1=

?6

945
&1,

we have, for arbitrary #1>0 and #2>0,

&u$&u� $&2�\?2

2
&

48
?2+

48
?2 #1+ u2

1

+ :
�

l=2 _
((2l&1) ?)2

2
+

48
?2 \ ?6

960
&1+ (2l&1)4 1

#1 & u2
2l&1

+\(2?)2

2
&

180
?2 +

180
?2 #2+ u2

2

+ :
�

l=2
_((2l ) ?)2

2
+

180
?2

1
16 \

?6

945
&1+ (2l )4 1

#2& u2
2l . (16)

By comparing the corresponding coefficients in the above and (11), we
obtain sufficient conditions for C� 2 in (5):
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(I)
?2

2
&

48
?2+

48
?2 #1�

?4

2
C� 2

2 (coefficients of u2
1),

(II)
((2l&1) ?)2

2
+

48
?2 \ ?6

960
&1+ (2l&1)4 1

#1

�
((2l&1) ?)4

2
C� 2

2

(\l�2) (coefficients of u2
k for odd integers k�3),

(III)
(2?)2

2
&

180
?2 +

180
?2 #2�

(2?)4

2
C� 2

2 (coefficients of u2
2),

(IV)
(2l?)2

2
+

180
?2

1
16 \

?6

945
&1+ (2l )4 1

#2

�
(2l?)4

2
C� 2

2

(\l�2) (coefficients of u2
k for even integers k�4).

We now try to find the smallest C� 2>0 for which there exists #1>0 and
#2>0 satisfying (I)�(IV). This problem is reduced to getting the smallest
solution of the following three inequalities for C� 2

2 (the first, from (I) and
(II), is just (12), the second follows from (III) and (IV), the third by (13)):

?6

10
&96�?4 \?4

96
(?2C� 2

2&1)+1+\?2C� 2
2&

1
9+

?6

84
&

45
4

�?4 \ ?4

180
(4?2C� 2

2&1)+
1
2+\?2C� 2

2&
1
16+

1
3?

<C� 2 . (17)

Straightforward calculations of the solution range of each of these inequa-
lities show that the desired minimal solution C� 2 of (I)�(IV) is provided by the
larger of the two places of equality in the first inequality in (17). This is given
by

C� 2 :=
1

3 - 5 ?3

_(&2160+25?4+4 - 5 - &174960&1080?4+243?6+5?8)1�2,

(18)

and thus Theorem 2 is proved. K
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3. AN APPLICATION: THE MULTI-DIMENSIONAL CASE

In the present section, we show that our result can be extended to the
multidimensional case that involves the tensor product of one-dimensional
piecewise polynomial spaces.

Let 0 be a bounded convex domain in Rn. ( } , } )L2(0) and & }&L2(0) denote
the inner product and the associated norm in L2(0), respectively. We use
several Sobolev spaces such as H 1(0), H 1

0(0), and so on. In particular,

|�|H 2 (0) :=_ :
|:|=2

&D:�&2
L2(0) &

1�2

denotes the semi-norm of H 2(0) where

:=: (:1 , :2 , ..., :n), :j # N,

|:| :=:1+:2+ } } } +:n ,

D:� :=
�|:|�

�x:1
1 �x:2

2 } } } �x:n
n

.

We only describe an example for the case of the region 0=[0, 1]_[0, 1],
but the higher dimensional extension will be straightforward. We consider
the tensor product space of the one dimensional piecewise polynomials of
degree �N+1. Since the H 1

0-projection Pu of u # H 1
0(0) into the approxi-

mation space S(0) :=S2, N(I )�S2, N(I ) satisfies

&{(u&Pu)&L2 (0)�&{(u&v)&L2 (0) for \v # S(0), (19)

we obtain the inequality

&{(u&Pu)&L2 (0)�&{(u&PyPxu)&L2 (0) . (20)

Here, Px u( } , y) means the one dimensional H 1
0-projection in x for fixed y,

and Py(x, } ) as well.
Then, by (2), we have

&u&Pxu&L2 (0)�CNh &ux&L2 (0) .

Therefore, by the orthogonality of the H 1
0-projection, we get

&(u&PyPxu)x&2
L2 (0) =&(u&Pxu)x&2

L2 (0)+&(Pxu&PyPxu)x&2
L2 (0)

=&(u&Px u)x&2
L2 (0)+&(Px(u&Pyu))x&2

L2 (0)

�&(u&Px u)x&2
L2 (0)=&(u&Pyu)x&2

L2 (0)

�C 2
Nh2(&uxx &2

L2 (0)+&uxy &2
L2(0)). (21)
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Similarly, we have

&(u&PxPyu)y &2
L2 (0)�C 2

N h2(&uyy&2
L2 (0)+&uyx &2

L2(0)). (22)

Thus, we obtain the estimate

&{(u&Pu)&L2(0)�CNh |u|H2 (0) , (23)

which implies that the same constant as in the one-dimensional case can
also be used for two dimensions.

Remark. In the numerical verification methods for nonlinear elliptic bound-
ary value problems, the magnitude of the constants in the a priori error estimates
for finite element solutions of Poisson's equation plays an essential role
[6, 7, 9, 10]. In general, these constants have to be estimated as sharply
as possible, because their size seriously affects the efficiency of verification
cost. This is the principal motivation of our present work. The practical
and efficient estimates of such constants for a triangular finite element mesh
would also be an important task in the future.
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